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Abstract

In this note we give condition number estimates for two-level Toeplitz
matrices generated by bivariate 27-periodic weakly sectorial symbols
(the largest class of symbols for which we can guarantee the invertibil-
ity of all the corresponding Toeplitz matrices). By using and extending
tools previously developed in the one-level context, we show that the
asymptotical ill-conditioning is essentially related to the order of zeros
of the symbol.
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1 Introduction

The aim of this paper is the analysis of the Euclidean conditioning () (i.e.
with respect to the spectral norm = the largest singular value) of two-level
Toeplitz matrices of the form Ty, (f) where n and m are large and where
the symbol f is assumed to be L™ over I? = (—,7|?> and weakly sectorial.
We recall that a function is weakly sectorial if and only if there exists a
straight line s passing from the complex zero such that its essential range
is all contained in one of the two closed half planes having s as frontier
and it is not all contained in s (see [1]): following a simple reasoning (a
complex rotation of the essential range), it is evident that we can reduce the
above reasoning to the case where the real part of f is nonnegative and not
identically zero and with generic imaginary part.

In a more explicit language the entries of Tp,m(f) can be described as
follows: (Tpm( f))(j,k)(p,q) = tk—j,g—p With t.s being the Fourier coefficients
of f, i.e.,

£ = ot f e Fla,y)e 2 +s¥dady, i =~1
TS 4 2 1y y: v *
7 - J—7

Here the 2-index notation (Tnm(f))(jk)(pq) indicates that we are selecting
the block (j,k) of size m with j,k € {1,...,n} and, in that block, we are
selecting the entry (p,q), p,q € {1,...,m}.

Such a kind of matrices (often also called block Toeplitz with Toeplitz
blocks) arise in several applications (see e.g. [2]) such as Markov chains,
integral equations, in the solution of certain partial differential equations
(PDEs), image restoration etc and for these applications the solution of
large linear systems is often required so that the study of the conditioning
of the related problem is a key point.

Indeed, for estimating the inherent error in the solution of a correspond-
ing linear system and in understanding the convergence speed of iterative
methods, it is of crucial interest to evaluate precisely the asymptotic be-
havior of the condition numbers of T, (f): this is in fact the topic of the
present paper.

More precisely we will show that the upper bound of the condition num-
ber will depend on the maximal order of the zeros of Ref: the presence of a
large Im f will decrease the condition number. Tight lower estimates can be
found when f is real valued i.e. the imaginary part is identically zero and
more generally in the case where the zeros of the imaginary part include
those of the real part with equal or higher orders. Our analysis includes



the simple case of a finite number of isolated zeros and the more involved
situation of a finite number of smooth curves of zeros as well.

The paper is organized in two more sections: in Section 2 we report
all the theoretical results and we give some practical examples; Section 3
contains a discussion on the results and some conclusive remarks.

2 Condition number estimation for two-level Toeplitz
matrices

Let f € L™ be a 2-variate, 2m-periodic function and suppose u(z,y) > 0
where u(z,y) = Ref(z,y) and v(z,y) = Im f(z,y). Assume that u has
a finite number of distinct zeros (z;,y;) € I? = (—m, 7%, j = 1,...,k,
has infinitely many zeros which form a finite set of disjoint smooth curves
Ci:={(z,y) : Cj(z,y)=0},j=1,...,q, with Cj(z,y) regular enough and
27-periodic, and suppose that w is positive elsewhere. For Y C I2, we define
by S(Y,6) = U per {(®,9) : |@,9) — (2,9)lloo < 6}. A point (,5) € I2 is
said to be a zero of u > 0 if for ¥ = {(Z,7)} we have

essinf{u(z,y) : (z,y) € S¥,8)} =0 V6> 0;

moreover (Z,7) € I? is a distinct zero if it is a zero and there exists a value
&1 > 0 such that

essinf{u(z,y) : (z,y) € S(¥,6)\S(Y,8)} >0 Vé: 0< 6 < 6.

In the same lines C is said to be a curve of zeros of u if every point of C is
a zero and C is a curve; moreover C is a isolated curve of zeros if, setting
Y = C, there exists a value §; > 0 such that

essinf{u(z,y) : (z,y) € SY,6:)\S(¥,6)} >0 V§: 0 <6< é1.

Then
essinfu > 0 on 1%\ §(Y, §)

for all § > 0 and where ¥ = {u;?:l{(xj,yj)}} U {UL1C;}} is the set of all
the essential zeros of u. We fix now § > 0 so that the domains S(Y,§) are
pairwise disjoint so that Y is either a isolated zero {(z;,y;)}, € {1,...,k}
or a isolated curve of zeros C;, j € {1,...,q}. Then we define the functions



w(z,5) and wg for (Z,7) being an essential zero of u and C being an isolated
curve of zeros of u:

1 inf min  sup (1)
w(z,g)(¥) {Ri}rer, #K < o0, Ry circular sector k c(t) C Rk
with positive angle independent of § te[0,1]

UeRk = S{(Z,9)}.,0)
{essint {u(e,0) :  <1e.9) - @ D)lle < 8, (m9) € )|}

where § > 0, (Z,7) is the unique zero of v in S({(%,7)},9), t € [0,1], and
¢(t) ranges among all possible curves in I? N Ry, intersecting the point (Z,7).

wa(v) = sup_w(i,g)(r/). (2)
(z,9)eC
These functions characterize the order of an isolated zero and of an
isolated curve of zeros respectively.

Definition 2.1 Let (Z,7) be a isolated zero of u; its order is defined as

log(w(z 4)(v))
voee  log(v)

According to the same lines we define the order of the zeros forming a
isolated curve C of zeros.

For instance for
f(z,y) =2° + (z +y°)*

we have wg o) () ~ v? and for

1

Flz,y) =1 — 22 — g2+ (&® + |y))t e ViE-="=7
Y |

we have wg(v) ~ v with C being the circle defined by z? +y? = 1.

In an analogous way we can define zeros or curves of zeros of logarithmic
orders and the ones of exponential orders. The first case happens when the
quantity in Definition 2.1 is equal to zero: in this situation we should talk
of zero order which includes the case of a zero of logarithmic type as

1
H& ) = Togo (2l + )]
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with w0)(v) ~ log(v). The second situation occurs when the quantity
considered in Definition 2.1 is equal to +oco: in this case we should talk of
zero of co order (or of super polynomial type) which includes the case of a
zero of exponential type as

1
flz,y) = 4P

with wg0y(v) ~ e”" and as
1
f(:c,y)={ e VE=THy=11 z>1l,y>1
(x—1)%2 + (y —x)* elsewhere
with wy 1y(v) ~ eV,

The given notion of order of zero stated in Definition 2.1 is very impor-
tant for studying the asymptotical ill-conditioning of matrices Tim, (f) with
f weakly sectorial and n,m — co.

As an example we consider the real valued symbol z2 + y2. It is simple
to show that 4 — 2 cos(z) — 2cos(y) < z2+y2 < 72/2[4 — 2 cos(z) — 2 cos(y)]
and therefore by the linear positivity of the Toeplitz operators (see [3]) we

have
Ai(A) £ M(Tom(£)) < T2A5(A) /2

where A;(X) indicates the j-th eigenvalue (in nondecreasing order) of the
Hermitian matrix X and A = Tpm(4 — 2cos(z) — 2cos(y)) is the discretized
Laplacian with zero boundary conditions on a 2 dimensional rectangle. The
eigenvalues of A are explicitly known and in particular we have

Amin(A) ~ 7r2(n—2 -+ m"z)/f:',

lim  Amax(A) = 8.

n,Mm—00

Therefore the Euclidean condition number of Ty, (£) is asymptotic to (n=2+
m~2)~1 which is bounded by w(n + m) ~ (n +m)? and is asymptotic to it
if n ~ m. The latter fact is very general and holds for the larger class of
weakly sectorial symbols. Indeed the subsequent upper estimate result for
the condition number is true.

2.1 An estimate from above

Theorem 2.1 Let f € L* be a 2-variate, 27-periodic function. Suppose
Re f > 0, and assume u = Re f has a finite number of distinct zeros



(z4,y5) € I* = (—m,7]?, j = 1,...,k, has infinitely many zeros which form
a finite set of disjoint curves C; := {(z,y) : Cj(z,y) =0}, =1,...,q, with
Cj(z,y) regular enough and 27-periodic, and suppose that u is positive
elsewhere. Define w;(n) = w(z, 4,)(n), i =1,...,k, and we;(n), j =1,...,4,
by Egs. (1) and (2) respectively, put

w(n) =  max {wi(n),we; (n)},
1<i<k

1<j<g¢g

and let v=Imf. IfVj=1,...,q we have

o)

max {sup #(C;Nr),sup#(C; N r)} < oo, (3)
reH reV

with H denoting the set of all the horizontal lines and with V denoting the
set of all the vertical lines, then

&(Tam(£)) < 12 flloo([[v]|eo + Dw(e(n +m)), (4)

for all sufficiently large n,m, where Tnm(f) is the (nm x nm) two-level
block Toeplitz matrix generating by the function f and ¢ > 1 is an absolute
constant.

Proof: We consider the discretization — 1 =% < T1 < T93 << IN=T
along the z axis and we define the sets X; = {(z,y) : = € (Ti=1,%i),y €
(=m,m,i=1,---, N}, which are stripes along the y direction. Suppose that
the set X; contains some of the distinct zeros and some disjoint pieces of
some of the curves of zeros. We consider now all the distinct zeros and just
one point for every piece of the curve, to form a set of k; points (z;,%:;),7 =
1,...,k;. We fix n,m and use the classical result by Dirichlet (Lemma 3.5
of Bottcher and Grudsky [1]), with p = 1/12, 8; = (nxy, + my;;)/(27), j =
1,2,...,k;, to get an integer g; such that

1 S qi S ]-Ski: qz'(nmij +myij) = 27TZ+ (_%:%) 3 j = 1:2)' . ':ki- (5)

We follow the same trigonometric manipulations as in the proof of Theorem
3.4 of Bottcher and Grudsky in [1]:

cos(gi(nz +my)) = cos(gi(nx;; +my;;)) cos(g:(n(z — z5;) +m(y — ¥s;)))
— sin(gi(nzy; + my;;)) sin(gi(n(z — zi;) + m(y — yz'j()g))-



From (5) we have

V3 1
cos(g;(nzi; +mys;)) > —2—,51n(qi(na:ij +my;;)) < == | -

We choose the points (z,y) € X; close enough to (z; 1>¥i;), such that
T
qz(n(x - xi_-,‘) + m(y - yh)) = qi(n + m)||(3:, y) - (xijayij)”m e E

or equivalently ||(z,y) — (2, 4i;) |l < Then

™
qu(n =+ m} ’

cos(as(n(e — 21) + mly — 34))) > 22, sin(asn(e - 25) +mly - 3i) < 2

and by using the latter inequalities in (6), we find

cos(g;(nx + my)) > % (7)

iFrom the regularity of the curves of zeros and since ¢; is integer, if we
replace a point (z;;,%;;) (from the set of k; points) with another belonging
to the same piece of the same curve, then we get the same integer ¢; from
the Dirichlet result. Thus we come back to construct the discretization
by choosing the successive points Z;_1,%; to be so close each other such
that the integer g; corresponding to X; will be independent of the choice
(zi;,%;) € X;. The distance Z; — Z;_1 can be estimated as follows.

If there exists a piece of curve in X; with endpoints (Z;_1,%;—1) and (T =)
this piece must be transformed, via (5), into (—%, £). So, ¢;(n(Z; — Zi—1) +
m(F; — Ji-1)) < § and by assuming that Z; — Z;_; ~ %; — Gi_1, we obtain

Bi— T =0 (%Z—m)) ; (8)

The case where Z; — Z;—1 = o(§; — %i—1), which means that the curve is
parallel or tangent to the direction y, is covered as follows: if the curve is
parallel by taking the discretization along the axis y, while if it is tangent
by taking small enough the distance Z; — Z;_; such that the length of each

piece of curve is of order O ( =% . We consider now the integer
3g;(n+m) g

g= lgg%{qi}



and the function

COS(Ql(nx + my)): ('T:y) € )g].:

COS(Q‘Q(TLQL' o+ my)): (may) € Xa,
Inm (T, Y) = .

cos(qN(n:.c +my)), (z,¥) € Xn.

We observe that ¢ is bounded by a pure constant independent of n and m
since ¢; < 13% and all the k;’s are uniformly bounded from above by an
absolute constant not depending on n neither on m thanks to assumption

(3)-

We put now

1 6g(n +m )
Lo 3ol + 10 (M) Gmr2k )
J

for each distinct root (zj,y;),7 = 1,..., k,

1 6g(n +m
L = 3ol + i (L) (10)
€ T
for the curve of roots Cj, j = 1,...,q, and
M = 2(]jolloo +1). (11)
We consider the function
bnm(way) = f(a:, y) + iM grm (2, )- (12)

The Fourier coefficients ¢, g, of cos(gnm(nz +my)), |l1] < n—1 and || <
m — 1 respectively, are given by

iy = [ [T gum(z,y)e st dydz
= 2{\;1 n-i_l f:r cos(gi(nz + my)e—i(“m“?y)dydm
= Efil ;::_1 fi"ﬂ_ ei((?m—h)z-%(qu-h)y) + emil(tam)z+(la+am)y) dydy
= i fg, @ ide . [T, Jamvdy
+ Ei"il ;z_ ) e—ilatan)z 4. . [t e~illtam)ygy — 0
since

b m
f ei(qim—lz)ydy =0, / e~ilatamly gy, — 0,

- -



Therefore Tyum (bnm) = Tnm(f). We choose n and m so large that m <
6. We claim now that the essential range of the restriction of bnm to S;(6) =
S({(z;,y5)},0) lies above the straight line given by Im z = 1 — %Re z and
that the essential range of the restriction of bpm to S(Cj,8), lies above the
straight line given by Im 2 =1 — %Re z. Since

bam (2, ) = u(z,y) +i(v(z,y) + Mgnm(z,7))),

we have to prove that
v(z,y) + Mgnm(z,y) > 1— eiju(a:,y)
for almost all (z,y) € S;(6). We prove that actually
,Y) + Monn(2,9) > 1+ oo (13

when (z,y) lies in the aforementioned sets. To prove (13) we take the
following cases: B

1) (&) — (250 le < atnrm) Let that (z;,y;) € X; is a distinct root.
We suppose, without loss of generality, that S; (Wf;-_mj) € X;, otherwise,

since of (8), we redefine the constant ¢ such that each of S; (aq—(fm) , j=
1,...,k, should belong in just one of the X;’s. Then from relation (9) and
the nonnegativity of u(z,y) we get

o
2

1
e—u(w,y) + Mgpm(z,y) = M cos(gi(nz + my)) > =1+ ||v]|oo-

J

In the case where (z;,y;) € Cs for some s =1,...,q, since we have chosen g
as the largest value of ¢;’s we have that

g (2,) = cos(as(ne +my) > 5, @,1) € 5 (05, s ) N

for all 4=1,..., N: 86

1
u(xzy) S Mgﬂm(‘r:y) > = 1+ ”U”OO

s

=
2



i) sz < 1@, y) = (25, 5)llo < 6. From the definition (1) we obtain
1

1
Zu(may) =+ Mgﬂm(mly) Z 6g(n+m) -M=1+ ”vlloo;
j €jw;i (%)
for the distinct roots while for the curve of roots Cs, definition (2) gives us
1 1
€C, ecswgs(MT:;"—ml)

At this point, we consider the value

e=__ min {e,-,ecj} 5 (14)

1<igk,1<55%q

This corresponds to

w (M) = max max{w;,wg;} (M) . (15)

T T 1<i<k,1<i<q

Thus, the essential range of the restriction of the function bnm to the set
Y = {U;?:l{(mj,yj)}} U {uj.:lc,-}} lies above the line

Imz=1- %Re 2. (16)

This is true since € is chosen as the smallest value from the ones correspond-
ing to the distinct points as well as along the curve. Since Re bpm = 0 we
introduce the value 7 given by

7n := essinf {u(m, y): (z,y) € Sy, 5)} 3

Y = {Ui{(z5m)} U {UiLiCi}), 6>0
which is positive.
;From now on, the prof of Theorem 3.4 by Botther and Grudsky [1]
follows exactly the same with € in the place €,. Finally we get

ITAAN < % = 12(|[vlloo + 1w (222E2)
= 12(Jolloo + Dew(e(n +m))

which completes the proof of the Theorem. °

10



2.2 Comments on the assumptions of Theorem 2.1
We make two main observations.

e For simplicity we have assumed that the curves of roots are pairwise
disjoint. We have to comment here that if there exist curves inter-
secting each other, then the results of the theorem remain unchanged.
The difference in the proof is that we have some sets of intersecting
pieces of curves in the band X, instead of some pieces of curves. We
consider the same topology by considering small enough stripes such
that the corresponding integer g; will be the same for each choice of
points belonging to the set of intersecting pieces.

e It was noted in the proof that if the curve is parallel to the axis y then
the discretization is taking along the axis y. This generates now the
question: is the considered theorem true in the case where there are
at least two curves of roots in which the first is parallel to the axis
z and the other is parallel to the axis y? The answer is yes. This
case is covered by taking the discretization parallel to an appropriate
direction of the form z + ry to which any of the curve of roots is never
parallel. Such a direction exists because of the constant number of the
curves of roots. Then, by using the 27-periodic property and some
technical integration properties, we obtain ¢,,1, = 0 so that the proof
stands in this case too.

In conclusion Theorem 2.1 is true under much more general assumptions
concerning the curves of roots.

2.3 An estimate from below

Just for completeness we should recall that Theorem 2.1 has to be combined
with the universal bound stated in [4] and proved in [6]. More precisely
under the assumption that f is weakly sectorial we know that there exist
positive constants C and 7 such that &(Tpm(f)) < Ce?™+™) . Therefore if
"™t M) = o(w(c(n 4 m)) for every ¢ > 0 then the estimate in Theorem 2.1
cannot be tight

On the other hand, the upper estimate given in the former Theorem is
tight in the sense that there exist functions satisfying the related assump-
tions for which the estimate is asymptotically sharp, but it is also true that
we can construct examples for which the given estimate is not tight at all
even if w(e(n +m) = O(e?(™+™) for some positive ¢ and .

11



An example of functions belonging to the first class is f(z,y) = z? + y?
or f(z,y) = i(z® +y?)* + 2% + y?, a > 1 for which &(Tnm(f)) ~ (=2 +
m~2)~1 ~ w(n 4+ m): in actuality the estimates are sharp when the zeros
of the imaginary part include those of the real part with equal or higher
orders. On the other hand if we take the symbol f(z,y) =i+ 2% +y?® then
w(n+m) ~ (n=? +m™ )7 but £(Trpm(f)) ~ 1.

The previous examples show that the behavior of the imaginary part
plays a role at least in the lower estimate of the condition number as stated
and proved in the following Theorem.

Theorem 2.2 Let a1, as, 81,82, be positive numbers, let (zg,%0) € I?, and
suppose f € L® be a 2-variate, 2m-periodic function.

(a) If f(z,y) = O(|z — zo|** + |y — yo|*2) as (z,y) — (zo,%0) then there
is a constant C € (0,00) such that

Q] pyy X2

T for aln>1,m>1.
nol 4+ mo2

K(Tnm(f)) 2 C

(b) If f(z,9) = O(1/|logl(z — zo)/x||** + 1/|log|(y — yo)/7||*?) as
(z,7) — (z0,Yo) then there is a constant C € (0, c0) such that

(logn)* (log m)*

&(Tom(f)) = C (logn)® + (log m)°2

foralln>1,m>1.

(C) If f(z,y) = O(e—ﬁﬂx—wd_al +e—ﬁ2\y~yo|‘°‘2) as (:c,y) — (550190) then

im0 m R T () = o0

for every ki, ko > 0.

Proof: Without loss of generality we suppose that (zo,y0) = (0,0). Let
us assume that |a(z,y)| < K(|z|* + |y|*2) for |z| < § and |y| < é and fix
n,m > 1/6. We consider now the trigonometric polynomials

Pi, (w,y) =PI (2) P W)

m1ma 2

where ,
sin mT'H ] ) I

PI(0) = (14 €+ e O] = /2 ( 7
Sin 3

12



as defined by Béttcher and Grudsky in [1]. It is obvious that

f, g WY IP’1§($)|2 P2 (y)*dzdy
= o5 e P‘“( )|*dz gwf—- | P2, (y)|2dy
= ||le (m)llzlll”“"2 W)II3-

This allows us to find a lower bound of || P72, ||2 by using Lemma 4.2 of [1]
and more specifically we have

| Piv2, (z,y)||3

my m2

256 1 : _
172 1)%1-1 2j2—-1 17
|Brimalls > gz s (ma + D (m2 +1) (17)

We follow now the same technique indicated by B&ttcher and Grudsky (1]
for the proof of Theorem 4.1. Consider

s1n—J-—-—+z 21 sin Z2*Ly 272
PP = I, |f<s:y|2( ) (S5 ey

S [2 @(z, y)dady

for every m1, ma, j1 and jq positive. We fix j; and jo such that J1>o+1/2
and jo > ag +1/2 and since || PJL2, |loo = (m1 + 1)7 (mg + 1)72 we get

i

e JIn@dady = 73 ™ e B @dxdy—l— f"‘2 St <pay<s Bdy

Ty

+ f—<|y|<6 f q’d“"dy + f 1 <!'y|<6 f—<|:1:|<5 Qdzdy
bi fm 1 f6<|z|<r @dxdy <P f6<1y|<w f 1 @dzdy

+ f—(ly <6 f6<|:c|<7r (I)d‘T’dy =3 f6<|yl<1r f 3 <ix|<5 (I)dﬂ:dy
+ ft5<i'y|<7r f6<[mJ<ﬂ' Sdzdy

Lh+h+R+Ii+Is+Is+ 17+ Ig + Io.

13



Consequently we have to find upper bounds for the above integrals:

1y

=

[ &

+ +

I3

25 41 N 272
[T [T K2 (jafor + [y]on)? ("') (J_”) i

= = smi SlnE
9 2m_ ' 2 siu—z—-m y 272 ""'_1 sin Z1T= iz 271
K f_% |y |20 ( _%l_sin2 ) dy-f_;ll_l (—%—Smg ) dzx
'mL in m2tl 2j2 mL sinmﬁz‘ 27
K27 () Va7 el (R ) e
™y m .
;}_ . mo+l \ 2j2 m_I- sin 1L 25
K2 [T jyios (S257) a7 el () s
K2—§@(m2 + 1)25'2 2 . (my+ 1)2j1—2—
A2 251 _2
K?(m2+ 1)2.72 _Taﬁ(m1+1) J1 & =
2 1 2 2 1 2j
2K*—5(mg + 1) 232m2 — —ar(my + 1) = m1
. B
K (E?T i 5?) (my 120 (mg+ 1) 2
m 2
= f L fl <Ia:|<6K2(]m|al + [y[*2)
sin 1+1 2\ 21 p ™2t 272
( sin —;‘; ) sin %-2 dxdy
Ay . motl \ 272 . omq+1 N 201
™ sin =2X=y § sin =%~z
= K27 e (B Ty 2k () e
mg 2
1 . mo+1 272 . my+1 271
™ sin =2y § o sm—l--%z
e Kgf_:ii_z( sin% ) dy2fﬂ+1:c al( sin ¢ ) dx
1 . mo+l N 272 . my+l N\ 251
™ sin ==y 8 sin =g
+ 2K? f_% ly|*2 <—+—Sin2 ) dy2fﬂ+l o (—-—%—sin_i ) dx
< K’ (mp+ 1) 2 [ (n/z)%de
+ KZ%*(mo+ 1)232 2 2f 2"‘1 (7 /z)%dx
+ 2K2—15—(m2+1)232 2 2f o (1 /z) % dx
= Kz—g-—laz (m2+1)25’2 2 27rr25'1mf;rl =
s K2(m2 e 1)232 22 Fis Jl 1231 1
+ 2K 4 (mg+1)2:f2 2 21T m12-1
2
= 2K2 ('T+T) 231 1(m +1)2~72
1 2
2
i1—1_ 9ja—1
< M, (;;lff'F;%—z) m?ﬂ tmye

14



where Ms < oco. For the same reason we have

2
1 jo—1
I < M (—a—+1—2) ma 2l
o

where M3 < co and

Iy < f-"}—z<|yi<6f;nL<Em[<6K2(|$,al+|y|a2)2

(

sin 21— +1x 2}& sin 2272 +1y 272
ST ) ( =5 ) dady

i WL, 272 sin 71 +1$) 25 o

e K22ff+2 y2a2 (i_sazg_) dy-2ffz_ (ng_

ok KQQI‘L(-—-—Z—-—) dy - 2f1 g2
my

m+ + 4+ + A+

IA

24z ; +1_\ 241
sin 2211, sin Z1T= g
g )

2j :
+1 J2 sin itl

s, O 2_71
2K22f5 oy (M) dy - 2f1 (_+) dx

F) =
Sin 3 sin 3

K2 (5% yz‘” (m/y)*2dy -2 [o (/2 dz
K25 (n/y)2dy 2[4 5% (/) de
2K22f1 “2(7r/y}25'2dy 2f z% (7t /z) 1 dx
K2—~r21r25'2m§32 & 27:'2-71771:2"’1 i
K227r2mm§3'2 ! 27r m121-1

QKQ—EE—Q?TQ”’HLEJZ 1 2]7 m121-1

1

2 . )
4K2 (-—q —+ ﬂ?) T Ulﬂﬂmf‘”_lmgﬂ_l
ey L

2
1 1 251—1_2ja—1
My (—a—m o +—z.—m22) miT Tmyt T,

1

where My < co. Moreover

I5

IA

=

271 7 . mo+41 N 272
sin 21+l sin T2T=y
I Flloo fmg f5<l$l<"r (—3;52%—) (-_EE%Z—) dzdy
in 227y . sin 1T g

2jz 271
e 5 (e, ()
1flleo(ma + 1222 - 2 7 (n/2)"de < Msm3® ™,

with Ms < co. By using the same arguments, we deduce that

211
Is £ Memi" ™,
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where Mg < oo and

sin ZAT= +1.’1: sin 221> +l'y

251 272
1o Fo<pres Jociian (") () docy
< Flloo2 S (m/y)2dy -2 [F (/) da
£ ”f”oogﬁzjzmgjz—l,2fgf(ﬂ/$)2j1dx < Mngjz—l’

I7

IA

where M7 < co. Finally by following an analogous reasoning, we find
Iy < Mgmi™™,

where Mg < oo and

sin my +lz 2j1 sin m2+1,y 2j2
Ig < ”f”oo f6<[yl<'rr f5<|zl<7r sin% sinz% dzxdy

I Flloo2 J7 (/) %2dy - 2 [F (x/z) P de = Mo,

where My < co. Since j1 > a;+1/2 and j» > as+1/2, the above bounds of
Is, I, I'7 and Ig are less than of the ones of Iy, Iz, I3 and I, and in addition
the same is true for My since it is an absolute constant. Thus by adding all
the above inequalities we get

IA

. 1 1 \? 2-1 2
47?2||fP£1:"3n2”% S M (m_;n‘ + m—gz) mljl m232 1’ (18)

where M < co. By using the inequality (17) we obtain

> 1 1 V2
I PAEIE < O (g + ) 1PERIR (19)

for some constant C;. Given n and m we write n = myj1 + k1 and m =
majs + ka, k1 € {1,...,51}, k2 € {1,...,jo}. From inequality (19) we infer

Sl L 38 2- =3 ae Y OX 2 ..
| Tom(F)PEZ,IE < 1FPEI3 < O (e + 622y 1 PB5, 115
2 \
Cs (3 + ) 1PB, 13

2 L.
< G (3h + 75 ITh (D1 Tem (1) P 13,

IA

which implies that
n*ima2

nol 4 moee’

[T (F)ll2 = C

16



and the part (a) of the theorem is proven.

b) For the proof of the part (b) of the theorem we follow exactly the
same technique with j; = jo = 1,m1 = n and ms = m. The bounds of
the simple integrals are taken as in proof of Theorem 4.1 of the paper of
Bottcher and Grudsky [1].

¢) The proof of the part (c) depends on the proof of part (a) as has been
described in [1]. °

We can combine the above two Theorems to obtain results for the con-
dition number. First we suppose that n ~ m ~ v, since that is the only
case with practical importance. If the hypotheses of Theorem 2.1 (where the
roots would be roots of the whole function f and not only of u) are holding
and, for every root of f, the hypotheses of part (a) of Theorem 2.2 are also
holding, then we can obtain results of the order of the condition number.
From (a) of Theorem 2.2 we get that

n%*lm®2 =
ne 4 mosz ’

K(Tom(F)) = Cy (

where @ = min{ay, s}, which corresponds to the maximum value of a’s
over all the roots. On the other hand Theorem 2.1 gives us that

1T (H)Il < 12(|[vlleo + Dew(e(n + m)) = Cow(v) = O@).

So,
K(Tam(f)) ~ ™.

Analogous results can be obtained in the cases of logarithmic or exponential
orders of roots or in the cases of mixed ones.

2.4 Some specialized results for the Hermitian case

In this subsection we discuss in more detail the Hermitian case (weakly
sectoriality of the symbol f with null imaginary part). We present two
results, a negative one and a positive one.

In the negative one it is shown that rotations and dilations of the domain
lead to a substantial change in the condition number of finite sections of
Toeplitz matrices so that the conditioning of Tym(f(z —y, z +1%)) cannot be
reduced to the one of T, (f(z,y)): more precisely, we furnish an example

17



Table 1: The minimum eigenvalue of Th(f) with f(z,y) = (2—2cos (z)) +
(2 — 2cos (y))?

” 1 | . N —” Am3m = ’\min(Tm3m(f)) I 10g(}‘m3m/)\8m32m) ”
$#T 4 256 0.39679 4
8 | 8 | 409 0.05057 2.97
163 | 16 | 65536 0.0047839 3.4
323 | 32 | 1048576 0.00028 3.83

Table 2: The minimum eigenvalue of T, (f o U) with (f o U)(z,y) = (2 —
2cos (z —y)) + (2 — 2cos (z + y))?

[n m] N ] ;= tminCmem () [1080msm/Asmsom) |
£ 4 256 0.78799 .
83 | 8 | 4096 0.17679 2.15
163 | 16 | 65536 0.04082 21
328 | 32 | 1048576 0.01121 1.87

where the condition numbers of T (f) and Tpm(f o U) have asymptotically
different growth rates with the polynomial f(z,y) = (2 — cos(z)) + (2 —
cos (y))2 end with U= | 1 '

As displayed in Table 2.4, it is evident that the minimal eigenvalue of
Trn3m(f) behaves as m™ and this agrees with the general estimate n2 +
m~* when n = m® (combine Theorems 2.1 and 2.2 or refer directly to
Theorem 2.3). In the second case, under the same assumptions on the
partial dimensions (n = m3), we observe that the minimal eigenvalue of
T,3m(f © U) behaves as m™2 (all the computations were carried out in
Matlab with stopping criterion 10~3). Therefore, since in both the examples,
the maximal eigenvalues converge to 20 = ||fllc = [|f © Ullec a8 n,m —
00, it follows that (T8, (f o U)) and &(Ti3m(f)) have different order of

magnitude as m tends to infinity.
Concerning the positive result, under very mild assumptions on the zeros

being /2 times a 2-by-2 rotation matrix.
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of f = Ref and with the help of the notion of linear positive operator, it is
proved that a lower bound for the condition number can be easily obtained
by tensor arguments and the one level results in [1]. More in details the
following results hold.

Theorem 2.3 Let f € L*™ be a 2-variate, 2m-periodic, weakly sectorial
function of additively separable type i.e. f(z,y) = g(x) + h(y) for g and A
being L* and 27-periodic. If g, h > 0 then

max {Amin(T0(9)), Amin(Tm(h)) } < Amin(Trem(f)) < Amin(Tn(9)) +Amin(Tm (h))
(20)
and therefore there exist positive constants C;, Cs, ¢1, and ¢2 such that
wg(c1m)wp(c1m)
wg(c1n) + wp(c1m)

with

< K(Tnm(f)) < Co niin{wg(czn),wh(C2m)} (21)

wq(en)wp(em)
wg(en) 4+ wp(em)

1min{r.ug(cn),w;z (em)} < < min{wgy(en), wp(ecm)}

2

with wy(-) being as in Theorem 3.4 and Eq. (6) of [1] (the one level version
of our two level objects in Theorem 2.1 and Egs. (1)—(2)).

Proof: It is a simple manipulation of the one level results and of the tensor
structure of Tnm (f) = Tn(9) ® Im + In ® Ty () with Iy, denoting the identity
of size k. In fact, by the nonnegativity of ¢ and A we deduce that

Tnm(f) = Tn(g) ® Iy, Tnm(f) >, ® Tm(h)
and therefore
/\min(Tnm(f)) 2 Amin (Tn(g) ® Im) = /\min(Tn(g))’

)\min{Tnm(f)) 2 /\min(In ® Tm(h)) — Amin(T’m(h))-

The latter joint with the one level results in [1] implies the left inequalities
in (20) and (21). For the right inequalities it is enough to recall that

Amin(Tem () € VI Tam(f)v, Wi [v]2=1

and to consider the special vector v = x ® y where ||x||2 = [ly|lz = 1 and
where

Amin(Tn(9)) = X T (9)%, Amin(Tn(R)) = yETa(R)y.
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3

Conclusions

We have shown that the upper bound of the condition number depends
on the maximal order of the zeros of Ref: the presence of a large Im f
influences the extremal behavior by decreasing the condition number. Tight
lower estimates have been found when f is real valued. Our analysis includes
the case of symbols with a finite number of curves of zeros as well. We stress
that this case is not trivial since it cannot be reduced by tensor arguments
to the one level case as it easily happens when the symbol has only isolated
ZEeros.
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